I borrowed some code from Swin Transformer github repository.
@inproceedings{liu2021Swin,
title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
year={2021}
}
%pip install timm
%pip install scikit-image
import random
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage
from skimage.transform import resize
import itertools
from sklearn.metrics import ConfusionMatrixDisplay
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import torchvision
import torchvision.transforms as transforms
# tqdm
from tqdm.notebook import tqdm_notebook
# Setting the seed for reproducibility
random.seed(42)
g = torch.Generator().manual_seed(2147483647)
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
print("Device:", device)
plt.style.use('dark_background')
Device: cpu
I copied these classes and functions from:
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
#-----------------------------------------------------------------------
if 'global_attention' in globals():
global_attention.append(attn)
#-----------------------------------------------------------------------
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
# qkv = self.qkv(x)
flops += N * self.dim * 3 * self.dim
# attn = (q @ k.transpose(-2, -1))
flops += self.num_heads * N * (self.dim // self.num_heads) * N
# x = (attn @ v)
flops += self.num_heads * N * N * (self.dim // self.num_heads)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
class SwinTransformerBlock(nn.Module):
r""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
fused_window_process (bool, optional): If True, use one kernel to fused window shift & window partition for acceleration, similar for the reversed part. Default: False
"""
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm,
fused_window_process=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
self.fused_window_process = fused_window_process
def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
if not self.fused_window_process:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
else:
x_windows = WindowProcess.apply(x, B, H, W, C, -self.shift_size, self.window_size)
else:
shifted_x = x
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
# reverse cyclic shift
if self.shift_size > 0:
if not self.fused_window_process:
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = WindowProcessReverse.apply(attn_windows, B, H, W, C, self.shift_size, self.window_size)
else:
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
x = shifted_x
x = x.view(B, H * W, C)
x = shortcut + self.drop_path(x)
# FFN
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
def flops(self):
flops = 0
H, W = self.input_resolution
# norm1
flops += self.dim * H * W
# W-MSA/SW-MSA
nW = H * W / self.window_size / self.window_size
flops += nW * self.attn.flops(self.window_size * self.window_size)
# mlp
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
# norm2
flops += self.dim * H * W
return flops
class PatchMerging(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
def extra_repr(self) -> str:
return f"input_resolution={self.input_resolution}, dim={self.dim}"
def flops(self):
H, W = self.input_resolution
flops = H * W * self.dim
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
return flops
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
fused_window_process (bool, optional): If True, use one kernel to fused window shift & window partition for acceleration, similar for the reversed part. Default: False
"""
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
fused_window_process=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
num_heads=num_heads, window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop, attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
fused_window_process=fused_window_process)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
def flops(self):
flops = 0
for blk in self.blocks:
flops += blk.flops()
if self.downsample is not None:
flops += self.downsample.flops()
return flops
class PatchEmbed(nn.Module):
r""" Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
if self.norm is not None:
x = self.norm(x)
return x
def flops(self):
Ho, Wo = self.patches_resolution
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
return flops
class SwinTransformer(nn.Module):
r""" Swin Transformer
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args:
img_size (int | tuple(int)): Input image size. Default 224
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (int): Window size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
fused_window_process (bool, optional): If True, use one kernel to fused window shift & window partition for acceleration, similar for the reversed part. Default: False
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, fused_window_process=False, **kwargs):
super().__init__()
self.num_classes = num_classes
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
self.mlp_ratio = mlp_ratio
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
input_resolution=(patches_resolution[0] // (2 ** i_layer),
patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
fused_window_process=fused_window_process)
self.layers.append(layer)
self.norm = norm_layer(self.num_features)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
def forward_features(self, x):
x = self.patch_embed(x)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x)
x = self.norm(x) # B L C
x = self.avgpool(x.transpose(1, 2)) # B C 1
x = torch.flatten(x, 1)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def flops(self):
flops = 0
flops += self.patch_embed.flops()
for i, layer in enumerate(self.layers):
flops += layer.flops()
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
flops += self.num_features * self.num_classes
return flops
model = SwinTransformer(img_size=96,
patch_size=4,
in_chans=3,
num_classes=10,
embed_dim=48,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=6,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
drop_path_rate=0.1,
ape=False,
norm_layer=nn.LayerNorm,
patch_norm=True,
use_checkpoint=False,
fused_window_process=False)
# Transfer to GPU
model.to(device)
# setup the loss function
criterion = nn.CrossEntropyLoss()
# setup the optimizer with the learning rate
model_optimizer = optim.AdamW(model.parameters(), lr=5e-4)
model
SwinTransformer(
(patch_embed): PatchEmbed(
(proj): Conv2d(3, 48, kernel_size=(4, 4), stride=(4, 4))
(norm): LayerNorm((48,), eps=1e-05, elementwise_affine=True)
)
(pos_drop): Dropout(p=0.0, inplace=False)
(layers): ModuleList(
(0): BasicLayer(
dim=48, input_resolution=(24, 24), depth=2
(blocks): ModuleList(
(0): SwinTransformerBlock(
dim=48, input_resolution=(24, 24), num_heads=3, window_size=6, shift_size=0, mlp_ratio=4
(norm1): LayerNorm((48,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=48, window_size=(6, 6), num_heads=3
(qkv): Linear(in_features=48, out_features=144, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=48, out_features=48, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): Identity()
(norm2): LayerNorm((48,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=48, out_features=192, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=192, out_features=48, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(1): SwinTransformerBlock(
dim=48, input_resolution=(24, 24), num_heads=3, window_size=6, shift_size=3, mlp_ratio=4
(norm1): LayerNorm((48,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=48, window_size=(6, 6), num_heads=3
(qkv): Linear(in_features=48, out_features=144, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=48, out_features=48, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath(drop_prob=0.009)
(norm2): LayerNorm((48,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=48, out_features=192, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=192, out_features=48, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
(downsample): PatchMerging(
input_resolution=(24, 24), dim=48
(reduction): Linear(in_features=192, out_features=96, bias=False)
(norm): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
)
)
(1): BasicLayer(
dim=96, input_resolution=(12, 12), depth=2
(blocks): ModuleList(
(0): SwinTransformerBlock(
dim=96, input_resolution=(12, 12), num_heads=6, window_size=6, shift_size=0, mlp_ratio=4
(norm1): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=96, window_size=(6, 6), num_heads=6
(qkv): Linear(in_features=96, out_features=288, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=96, out_features=96, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath(drop_prob=0.018)
(norm2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=96, out_features=384, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=384, out_features=96, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(1): SwinTransformerBlock(
dim=96, input_resolution=(12, 12), num_heads=6, window_size=6, shift_size=3, mlp_ratio=4
(norm1): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=96, window_size=(6, 6), num_heads=6
(qkv): Linear(in_features=96, out_features=288, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=96, out_features=96, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath(drop_prob=0.027)
(norm2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=96, out_features=384, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=384, out_features=96, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
(downsample): PatchMerging(
input_resolution=(12, 12), dim=96
(reduction): Linear(in_features=384, out_features=192, bias=False)
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
)
)
(2): BasicLayer(
dim=192, input_resolution=(6, 6), depth=6
(blocks): ModuleList(
(0): SwinTransformerBlock(
dim=192, input_resolution=(6, 6), num_heads=12, window_size=6, shift_size=0, mlp_ratio=4
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=192, window_size=(6, 6), num_heads=12
(qkv): Linear(in_features=192, out_features=576, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=192, out_features=192, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath(drop_prob=0.036)
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=192, out_features=768, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=768, out_features=192, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(1): SwinTransformerBlock(
dim=192, input_resolution=(6, 6), num_heads=12, window_size=6, shift_size=0, mlp_ratio=4
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=192, window_size=(6, 6), num_heads=12
(qkv): Linear(in_features=192, out_features=576, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=192, out_features=192, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath(drop_prob=0.045)
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=192, out_features=768, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=768, out_features=192, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(2): SwinTransformerBlock(
dim=192, input_resolution=(6, 6), num_heads=12, window_size=6, shift_size=0, mlp_ratio=4
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=192, window_size=(6, 6), num_heads=12
(qkv): Linear(in_features=192, out_features=576, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=192, out_features=192, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath(drop_prob=0.055)
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=192, out_features=768, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=768, out_features=192, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(3): SwinTransformerBlock(
dim=192, input_resolution=(6, 6), num_heads=12, window_size=6, shift_size=0, mlp_ratio=4
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=192, window_size=(6, 6), num_heads=12
(qkv): Linear(in_features=192, out_features=576, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=192, out_features=192, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath(drop_prob=0.064)
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=192, out_features=768, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=768, out_features=192, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(4): SwinTransformerBlock(
dim=192, input_resolution=(6, 6), num_heads=12, window_size=6, shift_size=0, mlp_ratio=4
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=192, window_size=(6, 6), num_heads=12
(qkv): Linear(in_features=192, out_features=576, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=192, out_features=192, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath(drop_prob=0.073)
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=192, out_features=768, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=768, out_features=192, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(5): SwinTransformerBlock(
dim=192, input_resolution=(6, 6), num_heads=12, window_size=6, shift_size=0, mlp_ratio=4
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=192, window_size=(6, 6), num_heads=12
(qkv): Linear(in_features=192, out_features=576, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=192, out_features=192, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath(drop_prob=0.082)
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=192, out_features=768, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=768, out_features=192, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
(downsample): PatchMerging(
input_resolution=(6, 6), dim=192
(reduction): Linear(in_features=768, out_features=384, bias=False)
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
)
(3): BasicLayer(
dim=384, input_resolution=(3, 3), depth=2
(blocks): ModuleList(
(0): SwinTransformerBlock(
dim=384, input_resolution=(3, 3), num_heads=24, window_size=3, shift_size=0, mlp_ratio=4
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=384, window_size=(3, 3), num_heads=24
(qkv): Linear(in_features=384, out_features=1152, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath(drop_prob=0.091)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(1): SwinTransformerBlock(
dim=384, input_resolution=(3, 3), num_heads=24, window_size=3, shift_size=0, mlp_ratio=4
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=384, window_size=(3, 3), num_heads=24
(qkv): Linear(in_features=384, out_features=1152, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath(drop_prob=0.100)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
)
)
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(avgpool): AdaptiveAvgPool1d(output_size=1)
(head): Linear(in_features=384, out_features=10, bias=True)
)
# set the preprocess operations to be performed on train/val/test samples
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# download STL10 training set and reserve 50000 for training
train_set = torchvision.datasets.STL10(root='./data', split='train', download=True, transform=transform)
# download STL10 test set
test_set = torchvision.datasets.STL10(root='./data', split='test', download=True, transform=transform)
# define the data loaders using the datasets
train_loader = torch.utils.data.DataLoader(dataset=train_set, batch_size=128, shuffle=True, drop_last=True)
test_loader = torch.utils.data.DataLoader(dataset=test_set, batch_size=128, shuffle=False)
Files already downloaded and verified
Files already downloaded and verified
# Make sure gradient tracking is on, and do a pass over the data
model.train(True)
# Training loop
num_of_epochs = 200
for epoch in range(num_of_epochs):
for imgs, labels in tqdm_notebook(train_loader, desc='epoch '+str(epoch)):
# Transfer to GPU
imgs, labels = imgs.to(device), labels.to(device)
# zero the parameter gradients
model_optimizer.zero_grad()
# Make predictions for this batch
preds = model(imgs)
# Compute the loss and its gradients
loss = criterion(preds, labels)
# backpropagate the loss
loss.backward()
# adjust parameters based on the calculated gradients
model_optimizer.step()
torch.save(model.state_dict(), 'model_'+str(num_of_epochs)+'.pth')
Uncomment this line if you’re using a pretrained model.
# model.load_state_dict(torch.load('model_STL10_200_embed_dim_48.pth', map_location=torch.device('cpu')))
<All keys matched successfully>
all_labels, all_pred_labels = [], []
model.eval()
acc_total = 0
with torch.inference_mode():
for imgs, labels in test_loader:
imgs, labels = imgs.to(device), labels.to(device)
preds = model(imgs)
pred_cls = preds.data.max(1)[1]
all_labels.append(labels.data.tolist())
all_pred_labels.append(pred_cls.data.tolist())
acc_total += pred_cls.eq(labels.data).cpu().sum()
all_labels_flat = list(itertools.chain.from_iterable(all_labels))
all_pred_labels_flat = list(itertools.chain.from_iterable(all_pred_labels))
acc = acc_total.item()/len(test_loader.dataset)
print(f'Accuracy on test set = {acc*100:.2f}%')
Accuracy on test set = 47.46%
global global_attention
global_attention = []
img = train_loader.dataset.data[2,:,:,:]
print(img.shape)
img_plot = np.transpose(img, (1, 2, 0))
plt.imshow(img_plot)
print(img.shape)
img = torch.Tensor(img)
img = img.unsqueeze(0)
img = img.to(device)
print(img.shape)
pred = model(img)
(3, 96, 96)
(3, 96, 96)
torch.Size([1, 3, 96, 96])
for i in global_attention:
print(i.shape)
torch.Size([16, 3, 36, 36])
torch.Size([16, 3, 36, 36])
torch.Size([4, 6, 36, 36])
torch.Size([4, 6, 36, 36])
torch.Size([1, 12, 36, 36])
torch.Size([1, 12, 36, 36])
torch.Size([1, 12, 36, 36])
torch.Size([1, 12, 36, 36])
torch.Size([1, 12, 36, 36])
torch.Size([1, 12, 36, 36])
torch.Size([1, 24, 9, 9])
torch.Size([1, 24, 9, 9])
img_attn = global_attention[0][:,:,:,:].cpu().detach()
print(img_attn.shape)
print(torch.sum(img_attn[0,0,:,:], dim=1))
torch.Size([16, 3, 36, 36])
tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000])
plt.imshow(global_attention[0][0,0,:,:].cpu().detach().numpy())
img_attn = global_attention[0][0,0,:,:].cpu().detach().numpy()
fig, axs = plt.subplots(img_attn.shape[0]//6, 6, figsize=(14, 12), layout="constrained")
for i, ax in enumerate(axs.ravel()):
ax.hist(img_attn[i,:], bins=10)
plt.show()
The plot_attention
function takes an attention matrix of size (num_windows, window_height, window_width)
and returns an image of size (num_windows*window_height, num_windows*window_width)
. For every patch in a window, I’m taking its value in attention matrix. Then these patches will be organized to form windows using window_reverse
function.
def plot_attention(img_plot, img_attn, plot_title):
window_size = 6
img_attn,_ = img_attn.max(axis=-1)
num_windows, num_heads, num_patches = img_attn.shape
img_attn = img_attn.reshape(num_windows, num_heads, int(num_patches**.5), int(num_patches**.5))
if num_heads <= 6:
fig, axs = plt.subplots(num_heads//3, 3, figsize=(12,6))
else:
fig, axs = plt.subplots(num_heads//3, 3, figsize=(12,12))
fig.suptitle(plot_title)
for i, ax in enumerate(axs.ravel()):
img_attn_plot = img_attn[:,i,:,:]
img_attn_plot = img_attn_plot.unsqueeze(-1)
img_H = int(num_windows**.5) * int(num_patches**.5)
img_attn_plot = window_reverse(img_attn_plot, window_size, img_H, img_H)
img_attn_plot = img_attn_plot.squeeze(0).squeeze(-1).numpy()
ax.imshow(scipy.ndimage.zoom(img_attn_plot, img_plot.shape[0]//img_attn_plot.shape[0]))
ax.axis("off")
plt.show()
plt.imshow(img_plot)
plt.axis("off")
plot_attention(img_plot, global_attention[0][:,:,:,:].cpu().detach(), 'Layer 00, SwinBlock 00')
plot_attention(img_plot, global_attention[2][:,:,:,:].cpu().detach(), 'Layer 01, SwinBlock 00')
plot_attention(img_plot, global_attention[4][:,:,:,:].cpu().detach(), 'Layer 02, SwinBlock 00')
plot_attention(img_plot, global_attention[6][:,:,:,:].cpu().detach(), 'Layer 02, SwinBlock 02')
plot_attention(img_plot, global_attention[8][:,:,:,:].cpu().detach(), 'Layer 02, SwinBlock 04')
plt.imshow(img_plot)
plt.axis("off")
plot_attention(img_plot, global_attention[1][:,:,:,:].cpu().detach(), 'Layer 00, SwinBlock 01')
plot_attention(img_plot, global_attention[3][:,:,:,:].cpu().detach(), 'Layer 01, SwinBlock 01')
plot_attention(img_plot, global_attention[5][:,:,:,:].cpu().detach(), 'Layer 02, SwinBlock 01')
plot_attention(img_plot, global_attention[7][:,:,:,:].cpu().detach(), 'Layer 02, SwinBlock 03')
plot_attention(img_plot, global_attention[9][:,:,:,:].cpu().detach(), 'Layer 02, SwinBlock 05')